
Software Testing and Quality
Assurance

Theory and Practice
System Integration Testing

Dr. Mohammad Ahmad

2

Outline
• The Concept of Integration Testing
• Different Types of Interfaces
• Different Types of Interface Errors
• Granularity of System Integration Testing
• System Integration Techniques: Incremental, Top-down, Bottom-up,

and Sandwich and Big-bang
• Software and Hardware Integration
• Hardware Design Verification Tests
• Hardware and Software Compatibility Matrix
• Test Plan for System Integration
• Off-the-self Component Integration
• Off-the-shelf Component Testing
• Built-in Testing

3

The Concept of Integration Testing
• A software module is a self-contained element of a system
• Modules are individually tested commonly known as unit testing
• Next major task is to put the modules, i.e., pieces together to construct the

complete system
• Construction of a working system from the pieces is not a straightforward

task because of numerous interface errors
• The objective of system integration testing (SIT) is to build a “working”

version of the system
– Putting modules together in an incremental manner
– Ensuring that the additional modules work as expected without disturbing the

functionalities of the modules already put together
• Integration testing is said to be complete when

– The system is fully integrated together
– All the test cases have been executed
– All the severe and moderated defects found have been fixed

4

The Concept of Integration Testing
The major advantages of conducting SIT are as follows:

• Defects are detected early

• It is easier to fix defects detected earlier

• We get earlier feedback on the health and acceptability of

the individual modules and on the overall system

• Scheduling of defect fixes is flexible, and it can overlap

with development

5

Different Types of Interfaces
Three common paradigms for interfacing modules:

• Procedure call interface

• Shared memory interface

• Message passing interface

The problem arises when we “put modules together” because of interface

errors

Interface errors

 Interface errors are those that are associated with structures existing
outside the local environment of a module, but which the module uses

6

Different Types of Interface Errors
• Construction

• Inadequate functionality

• Location of functionality

• Changes in functionality

• Added functionality

• Misuse of interface

• Misunderstanding of interface

• Data structure alteration

• Inadequate error processing

• Additions to error processing

• Inadequate post-processing

• Inadequate interface support

• Initialization/value errors

• Validation od data constraints

• Timing/performance problems

• Coordination changes

• Hardware/software interfaces

7

Granularity of System Integration
Testing

System Integration testing is performed at different levels of granularity

• Intra-system testing

– This form of testing constitutes low-level integration testing with the
objective of combining the modules together to build a cohesive system

• Inter-system testing
– It is a high-level testing phase which requires interfacing independently

tested systems
• Pairwise testing

– In pairwise integration, only two interconnected systems in an overall
system are tested at a time

– The purpose of pairwise testing is to ensure that two systems under
consideration can function together, assuming that the other systems
within the overall environment behave as expected

8

System Integration Techniques

Common approaches to perform system integration testing
• Incremental
• Top-down
• Bottom-up
• Sandwich
• Big-bang

Pre-requisite
A module must be available to be integrated

A module is said to available for combining with other modules
when the module’s check-in request form is ready

9

Check-in Request Form

10

Incremental
• A software image is a compiled software binary
• A build is an interim software image for internal testing within an

organization
• Constructing a build is a process by which individual modules are

integrated to form am interim software image.
• The final build is a candidate for system testing
• Constructing a software image involves the following activities

– Gathering the latest unit tested, authorized versions of modules
– Compiling the source code of those modules
– Checking in the compiled code to the repository
– Linking the compiled modules into subassemblies
– Verifying that the subassemblies are correct
– Exercising version control

11

Incremental
• Integration testing is conducted in an incremental manner as a series

of test cycles
• In each test cycle, a few more modules are integrated with an

existing and tested build to generated larger builds
• The complete system is built, cycle by cycle until the whole system

is operational for system-level testing.
• The number of SIT cycles and the total integration time are

determined by the following parameters:
– Number of modules in the system
– Relative complexity of the module (cyclomatic complexity)
– Relative complexity of the interfaces between the modules
– Number of modules needed to be clustered together in each test cycle
– Whether the modules to be integrated have boon adequately tested

before
– Turnaround time for each test-debug-fix cycle

12

Incremental
• A release note containing the following information accompanies a build.

– What has changed since the last build?
– What outstanding defects have been fixed?
– What are the outstanding defects in the build?
– What new modules, or features, have been added?
– What existing modules, or features, have been enhanced, modified, or deleted?
– Are there any areas where unknown changes may have occurred?

• A test strategy is created for each new build and the following issues are
addressed while planning a test strategy
– What test cases need to be selected from the SIT test plan?
– What previously failed test cases should now be re-executed in order to test the

fixes in the new build?
– How to determine the scope of a partial regression tests?
– What are the estimated time, resource deman, and cost to test this build?

13

Incremental

Creating a daily build is very popular among many
organization

• It facilitates to a faster delivery of the system
• It puts emphasis on small incremental testing
• It steadily increases number of test cases
• The system is tested using automated, re-usable test cases
• An effort is made to fix the defects that were found within

24 hours
• Prior version of the build are retained for references and

rollback
• A typical practice is to retain the past 7-10 builds

14

Top-down

• Module A has been decomposed into modules B, C, and
D

• Modules B, D, E, F, and G are terminal modules
• First integrate modules A and B using stubs C` and D`

(represented by grey boxes)
• Next stub D` has been replaced with its actual instance D
• Two kinds of tests are performed:

– Test the interface between A and D
– Regression tests to look for interface defects

between A and B in the presence of module D

Figure 7.1: A module hierarchy with three
levels and seven modules

Figure 7.2: Top-down integration of
modules A and B Figure 7.3: Top-down integration of

modules A, B and D

15

Top-down
• Stub C` has been replaced with the actual

module C, and new stubs E`, F`, and G`
• Perform tests as follows:

– first, test the interface between A and C;
– second, test the combined modules A, B,

and D in the presence of C
• The rest of the process depicted in the right

hand side figures.

Figure 7.4: Top-down integration of
modules A, B, D and C

Figure 7.5: Top-down integration of
modules A, B, C, D and E

Figure 7.6: Top-down integration of
modules A, B, C, D, E and F

16

Top-down
Advantages
• The SIT engineers continually observe system-level functions as the

integration process continue
• Isolation of interface errors becomes easier because of the

incremental nature of the top-down integration
• Test cases designed to test the integration of a module M are reused

during the regression tests performed after integrating other modules

Disadvantages
• It may not be possible to observe meaningful system functions

because of an absence of lower level modules and the presence of
stubs.

• Test case selection and stub design become increasingly difficult
when stubs lie far away from the top-level module.

17

Bottom-up
• We design a test driver to integrate

lowest-level modules E, F, and G
• Return values generated by one module

is likely to be used in another module
• The test driver mimics module C to

integrate E, F, and G in a limited way.
• The test driver is replaced with actual

module , i.e., C.
• A new test driver is used
• At this moment, more modules such as

B and D are integrated
• The new test driver mimics the

behavior of module A
• Finally, the test driver is replaced with

module A and further test are performed

Figure 7.8: Bottom-up integration of
module E, F, and G

Figure 7.9: Bottom-up integration of
module B, C, and D with F, F, and G

18

Bottom-up
Advantages
• One designs the behavior of a test driver by simplifying the behavior of the

actual module
• If the low-level modules and their combined functions are often invoked

by other modules, then it is more useful to test them first so that
meaningful effective integration of other modules can be done

Disadvantages
• Discovery of major faults are detected towards the end of the integration

process, because major design decision are embodied in the top-level
modules

• Test engineers can not observe system-level functions from a partly
integrated system. In fact, they can not observe system-level functions
until the top-level test driver is in place

19

Big-bang and Sandwich
Big-bang Approach
• First all the modules are individually tested
• Next all those modules are put together to construct the entire

system which is tested as a whole
Sandwich Approach
• In this approach a system is integrated using a mix of top-down,

bottom-up, and big-bang approaches
• A hierarchical system is viewed as consisting of three layers
• The bottom-up approach is applied to integrate the modules in the

bottom-layer
• The top layer modules are integrated by using top-down approach
• The middle layer is integrated by using the big-bang approach after

the top and the bottom layers have been integrated

20

Software and Hardware Integration
• Integration is often done in an iterative manner

• A software image with a minimal number of core modules is loaded

on a prototype hardware

• A small number of tests are performed to ensure that all the desired

software modules are present in the build

• Next, additional tests are run to verify the essential functionalities

• The process of assembling the build, loading on the target hardware,

and testing the build continues until the entire product has been
integrated

21

Hardware Design Verification Tests

A hardware engineering process consists of four phases
• Planning and specification
• Design, prototype implementation, and testing
• Integration with the software system
• Manufacturing, distribution and field service

 A hardware Design Verification Test (DVT) plan is

prepared and executed by the hardware group before
the integration with software system

22

Hardware Design Verification Tests

The main hardware tests are as follows:
• Diagnostic Test
• Electrostatic Discharge Test
• Electromagnetic Emission Test
• Electrical Test
• Thermal Test
• Environment Test
• Equipment Handling and Packaging Test
• Acoustic Test
• Safety Test
• Reliability Test

23

Hardware and Software
Compatibility Matrix

• H/W and s/w compatibility information is maintained in
the form of a compatibility matrix

• It documents different revisions of the h/w and s/w that
will be used for official release of the product

• An Engineering Change Order (ECO) is a formal
document that describes a change to the hardware and
software

• An ECO document includes the hardware software
compatible matrix

• It is distributed to the operation, customer support and
sales teams of the organization

24

Test Plan for System Integration

25

Test Plan for System Integration

Table 7.4: A framework for system integration entry criteria

26

Test Plan for System Integration

Table 7.5: A framework for system integration exit criteria

27

Test Plan for System Integration
Categories of System Integration Tests:
• Interface integrity

– Internal and external interfaces are tested as each module is integrated
• Functional validity

– Tests to uncover functional errors in each module after it is integrated
• End-to-end validity

– Tests are designed to ensure that a completely integrated system works
together from end-to-end

• Pairwise validity
– Tests are designed to ensure that any two systems work properly when

connected by a network
• Interface stress

– Tests are designed to ensure that the interfaces can sustain the load
• System endurance

– Tests are designed to ensure that the integrated system stay up for weeks

28

Off-the-self Component Integration
 Organization occasionally purchase off-the-self (OTS) components from

vendors and integrate them with their own components

Useful set of components that assists in integrating actual components:

• Wrapper: It is a piece of code that one builds to isolate the underlying

components from other components of the system
• Glue: A glue component provides the functionality to combine different

components
• Tailoring: Components tailoring refers to the ability to enhance the

functionality of a component
– Tailoring is done by adding some elements to a component to enrich it with a

functionality not provided by the vendor
– Tailoring does not involve modifying the source code of the component

29

Off-the-shelf Component Testing
OTS components produced by the vendor organizations are known as

commercial off-the-shelf (COTS) components
A COTS component is defined as:
 A unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed
independently and is subject to composition by third parties

Three types of testing techniques are use to determine the suitability of a
COTS component:

• Black-box component testing: This is used to determine the quality of the
component

• System-level fault injection testing: This is used to determine how well a
system will tolerate a failing component

• Operational system testing: This kind of tests are used to determine the
tolerance of a software system when the COTS component is functioning
correctly

30

Built-in Testing
• Testability is incorporated into software components

• Testing and maintenance can be self-contained

– Normal mode
• The built-in test capabilities are transparent to the component user
• The component does not differ from other non-built-in testing

enabled components
– Maintenance mode

• The component user can test the component with the help of its
built-in testing features

• The component user can invoke the respective methods of the
component, which execute the test, evaluate autonomously its
results, and output the test summary

	Software Testing and Quality Assurance �Theory and Practice�System Integration Testing
	Outline
	The Concept of Integration Testing
	The Concept of Integration Testing
	Different Types of Interfaces
	Different Types of Interface Errors
	Granularity of System Integration Testing
	System Integration Techniques
	Check-in Request Form
	Incremental
	Incremental
	Incremental
	Incremental
	Top-down
	Top-down
	Top-down
	Bottom-up
	Bottom-up
	Big-bang and Sandwich
	Software and Hardware Integration
	Hardware Design Verification Tests
	Hardware Design Verification Tests
	Hardware and Software Compatibility Matrix
	Test Plan for System Integration
	Test Plan for System Integration
	Test Plan for System Integration
	Test Plan for System Integration
	Off-the-self Component Integration
	Off-the-shelf Component Testing
	Built-in Testing

